

Steve Hall

July 2nd, 2008

WHITEPAPER: SELECTING

DATABASE SOFTWARE FOR

SMALL NON-PROFITS

A Framework & Criteria for Comparison & Evaluation

With the inclusion of a number of new software-as-a-service offerings in

recent years, the landscape of database options for non-profits has changed

substantially. As a result, smaller organizations, ever-vigilant for

opportunities to increase efficiency and improve capabilities, are considering

the implementation of database systems in larger numbers. This paper

reviews in detail seven major groups of decision criteria that drive the

database selection process for a small non-profit organization.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall ii

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall iii

Contents
Introduction .. 1

Major Criteria Groups ... 1

Build it In-house ... 1

Purchase & Run In-house .. 2

Software Subscription Service ... 2

Functionality .. 2

Process Needs ... 2

Information Management Needs ... 3

Security Features ... 3

Management and Reporting Needs ... 3

Functionality versus Software Acquisition Models .. 3

Total Cost of Ownership .. 4

Contrasting Three Approaches .. 4

Build In-house ... 4

Purchase and Run In-house ... 5

Software Subscription Service ... 5

Not All Subscription Services are Created Equal .. 5

Concurrent verses Named-user Fees ... 5

Additional Module Fees .. 6

Volume-based Fees ... 6

Usability ... 6

The User Interface – Three Basic Approaches ... 6

Intuitive Design .. 6

Complexity & Feature Bloat .. 7

Training Resources ... 7

Accessibility .. 7

Compatibility .. 8

Reliability ... 8

Supportability ... 9

Remedial Support Services .. 9

User Support Services .. 10

Extensibility ... 10

The Data Integration Challenge .. 10

Extensibility through Modules .. 11

Extensibility through Open API’s ... 11

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 1

WHITEPAPER: SELECTING DATABASE

SOFTWARE FOR SMALL NON-PROFITS

A Framework & Criteria for Comparison & Evaluation

INTRODUCTION
This document reviews seven criteria groups that constitute a robust set of considerations for

selection of database software. The criteria have been focused to address small non-profit

considerations and have equal applicability to both community-service and faith-based

organizations.

Why focus on small non-profit’s you might ask? While non-profit organizations as a group

generally have a different set of needs than those of their commercial counterparts, the size

of the organization causes significant differences in criteria for software selection. This

paper focuses on small non-profits as a distinct group, providing a relevant set of criteria for

contrasting and comparing different approaches as well as different solutions.

MAJOR CRITERIA GROUPS
As mentioned in the introduction, this paper organizes the selection criteria evaluation

process into seven groups covering all aspects of the evaluation process. These groups are:

 Functionality

 Total Cost of Ownership (TCO)

 Usability

 Compatibility

 Reliability

 Supportability

 Extensibility

The rationale for this approach is derived from a similar methodology used by many product

development organizations in the product development process. During examination of these

seven criteria groups, in order to provide a framework for comparative analysis, this paper

will contrast them within three different approaches to software acquisition:

 Build it in-house

 Purchase & run it in-house

 Software subscription service

Build it In-house
Most non-profits have access within their ranks of supporters to one or more technology

professionals, or, at least a few technology enthusiasts that are capable of creating a hand-in-

glove software solution for their organization. The price seems right (limited or no initial

development cost) and the ability to build something that closely meets the organizations

needs often make this an attractive solution. Also, with the advent of freely available open-

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 2

source software systems on which to build a solution, this option has become increasingly

attainable.

Purchase & Run In-house
This is the traditional way that commercial software has been sold. The customer purchases

a license to install and operate the software via an upfront fee and probably then pays a

smaller amount for an annual support agreement. It is then the customer’s responsibility to

provide the infrastructure and operations processes for the software’s on-going operation.

Software Subscription Service
With the advent of broadly available internet technology, the software industry has evolved

its old “purchase and run in-house” model to a new and often more efficient model commonly

called “Software-as-a-service” (SaaS), or, “Software Subscription Service”. In this model, the

software is managed directly by the vendor generally relieving the customer from any kind of

infrastructure management responsibility and cost. This allows the customer to effectively

outsource all maintenance and operational considerations to the subscription provider.

The following sections of this paper are organized around the seven criteria groups. Within

the discussion of each group, we will examine and contrast the relative strengths of each of

these three approaches to software implementation and look at the appropriate questions to

be posed for each of these approaches.

FUNCTIONALITY
The first of our considerations and probably the most important is

functionality. The fundamental question here is: “Does it do what

I need both now and for the foreseeable future”.

There are a number of dimensions to this question:

 Does it address process needs?

 Does it address information management needs?

 Does it incorporate suitable security features?

 Does it meet management and reporting needs?

Other related aspects such as accessibility and usability are

covered elsewhere in this document.

Process Needs
This step may be as simple as preparing a list of the major processes that the application

must address. If one or more processes are critical, complex, or specialized to the

organization, it is useful to pay special attention to the inputs and outputs of the existing

processes and compare them to the inputs and outputs of the processes supported by the new

software to ensure compatibility. While the inputs and outputs do not necessarily need to

match, the new inputs and outputs must make sense within the context of your

requirements. In addition, it can be useful to determine:

 If existing data will be imported or uploaded

 If the software addresses probable future process requirements

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 3

Information Management Needs
In addition to process inputs and outputs, it is important to confirm that the application will

accommodate all current data needs. It is useful to also ensure that process managers within

the organization are empowered by the new software to implement additional data elements

as needed without assistance from technical support personnel.

It is prudent to also ensure that all added data elements are included on reports and can be

used to define filters both for reporting and demographic grouping purposes such as defining

communication recipient groups if such functionality is supported by the software.

Security Features
Because of the heavy reliance on volunteer resources and the often sensitive information

managed in a non-profit system, the security provided by the application is an important

consideration. The security features should easily restrict both groups and individuals to

specific areas of the system and also secure access to sensitive data fields as needed.

Management and Reporting Needs
In addition to standard reports that accompany all systems, the ability to clone and modify

existing reports, and create new custom reports on an ad-hoc basis is an important feature.

This will ensure that the system can meet specific organizational management information

needs both now and in the future.

It also useful to ensure the database system will allow creation of exception reports based on

any criteria. Exception reporting allows management to keep an eye on critical process

metrics on an exception basis. To facilitate this, the database system should also support the

automatic generation exception reports either when exceptions occur or on a scheduled basis.

Functionality versus Software Acquisition Models
Generally, the software acquisition approach will not have a substantial impact on

functionality. However, it is worth mentioning that there are influencers that are generally

inherent to each of the approaches:

 The build in-house approach – when starting from scratch – tends to have less

functionality due to the effort required to create, and implement the software as well

as constraints of time, expertise and possibly budget. It does however enjoy the

benefit of freedom to enhance and customize while resources remain available to do

so. In order to mitigate the issue of reduced functionality, building on a base that

uses one of the free open-source systems can give the development project a boost.

 The purchase & implement in-house approach tends to include more functionality due

to the commercial nature of software having to meet a range of needs. An ongoing

maintenance agreement will also generally provide upgrades to functionality over

time. However, these may be infrequent and can incur additional cost.

 The software subscription service approach is the most likely option to produce

frequent and inexpensive updates to functionality as the centralized and shared

infrastructure nature of the product lends its-self to more frequent revisions.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 4

TOTAL COST OF OWNERSHIP
It is clear that the initial cost of software is only a small fraction of its ongoing lifetime cost.

However, comparisons often do not include some of the hidden costs that can significantly

impact smaller organizations.

Contrasting Three Approaches
Each of our three software acquisition approaches carry with them substantial differences in

associated costs. While individual situations will have a large bearing on actual costs, the

following chart depicts a cost profile that is characteristic of our three approaches.

Build In-house

While the volunteer-developed and/or free open-source in-house effort incurs the lowest

implementation cost (costs only involve server, network and infrastructure-related

investments), the expense of this option increases steadily over time.

The primary factors driving these expenses are the cost of on-going preventative

infrastructure maintenance and support. This includes repair or replacement of computer

hardware, networking equipment, operating system upgrades, and configuration changes.

It is also a well-known phenomenon that volunteer resources change over time. As a result,

applications developed by volunteer resources are subject to significant future cost as those

volunteers move on and become unavailable to support the existing application(s). This fact

coupled with generally less than adequate documentation created for home grown systems

greatly increase the risk and therefore costs of these implementations over time.

Many of the inherent costs associated with build-your-own systems can be mitigated by

obtaining internet based open source software and hosting it externally as this all but

eliminates the high infrastructure investments. However, the way an open-source system is

implemented and how much the system is modified, can have a significant impact on future

supportability and costs.

Recently, the writer encountered a small non-profit spending over $26,000 per annum to

support a database and in-house email infrastructure that was implemented by volunteer

Build In-house

Purchase

Subscription

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 5

resources only 5 years earlier at a total implementation cost of less than $6,000. When this

organization later migrated to a subscription service, functionality increased exponentially

and costs reduced by about 75% after only a year of operation.

Purchase and Run In-house

In the case of purchasing software to run in-house, one would instinctively expect a larger

up-front cost to implement and then lower ongoing costs each year. Intuitively, it would seem

that the ongoing cost should be less than, for example, the software subscription model

where the software is effectively leased as a service on a month by month basis. In reality,

the comparison does not turn out this way for small non-profits as a result of the cost of

infrastructure support.

While support contracts for the upfront purchase of software licenses can cost as little as one

third of the rate charged for the subscription services, that cost plus the expense of

maintaining the infrastructure (server hardware, operating system upgrades, anti-virus,

patch management, network configuration, server and network management, professional

support contract and more) can significantly exceed the cost of a

subscription service. The dynamics of this cost comparison become

clear once it is understood that with a subscription service, the

infrastructure costs are spread across many clients using the service

whereas with the in-house scenario, the cost burden for infrastructure

is not shared.

Software Subscription Service

As has been noted, subscription services have the ability to provide software to meet the

needs of the organization at a lower TOC than either built in-house or purchased software

due to the savings on preventative infrastructure support, shared maintenance costs, and

dedicated on-going resources to create software to meet both current and future needs.

However, as the next section explains, not all subscription services are created equal.

Not All Subscription Services are Created Equal
It is important to further qualify any assessment by examining some of the different cost

models used in subscription services available to small non-profits.

When purchasing a software subscription service, the areas of: concurrent verses named-user

fees, additional module fees, and volume-based fees can add significantly to the cost of the

software.

Concurrent verses Named-user Fees

The first major difference between services is the per-user licensing model. While most

software is priced based on number of users, some pricing is based on named users while

others are based on concurrent users. It is especially important for non-profits to look for the

later model when there are a quite a few casual-use volunteers that will need database

access. Implementing the named user model can require difficult tradeoffs to be made

between user license numbers and the functionality available to volunteers.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 6

Additional Module Fees

The second area where not all products compare equally is the pricing for additional

functionality. While some vendors will supply additional functionality without additional

fees, others will charge per module for each piece of added functionality.

Volume-based Fees

The third and final area of significant cost differential can be in the area of service volume

pricing. Here, some vendors will charge a fee per item (per on-line credit card charge, per

member record, per email sent, per event registration booked) while others deliver “all you

can eat” for a fixed service fee.

In summary, when looking to select a subscription software vendor, in the area of pricing,

always seek information on the three hidden cost areas – concurrent versus named user fees,

additional module fees, and volume based fees.

USABILITY
An often overlooked aspect of comparative analysis is usability. Friendly, approachable, and

easy to use are significant factors in the overall benefit that an organization derives from its

software.

The User Interface – Three Basic Approaches
The great majority of the newer “internet based” software

works from within a web browser whereas historically, most

software was “installed on your computer” and provided a

much richer interactive experience than that provided with a

web browser. Generally, when presented with the option of

performing the same task using a web browser or an

installed application, most users will gravitate towards using

the installed application.

This difference in preference is due to a number of factors: responsiveness, number of “clicks”

necessary to complete a task, the “flat browser” surface compared to the “thick and rich”

application surface, and the ability to perform a number of tasks concurrently compared to a

single task at a time.

Recently, a number of vendors in the leading-edge internet-enabled constituent relationship

management (CRM) space have realized that the older “rich installed application” interfaces

are generally preferred to the two dimensional browser based interfaces and hence, have

started investing in a third, hybrid approach – “rich installed internet enabled applications”.

It is useful to understand which model is used by each software application and carefully

weigh the relative merits with respect to usability.

Intuitive Design
While a friendly and capable rich user interface is significant all by itself, an intuitive design

is an equally important aspect of software performance.

Friendly approachable software that intuitively works the way one would expect makes it

easy for staff and volunteers to complete tasks and supports process conformance. This

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 7

improves organizational efficiency and quality as users are willing to use the software to

manage designated processes. Difficult to learn software encourages users to find alternate

paths and workarounds to get their work done, ultimately leading to process divergence,

reduced efficiency, and a reduced quality of output for the organization.

Given the difficulty of measuring usability, this aspect of the software selection process is

often not given the weight it deserves. While one may not necessarily feel comfortable

comparing software by using a non-scientific qualitative score for “intuitive usability”, this

paper recommends that you do exactly that. Take a staff person or volunteer that will be

responsible for using some of the basic system functions and have them attempt to use the

software without any instruction. They will probably turn down a few dead ends and head

down some one-way streets the wrong way, however, intuitive software should help them

ultimately complete the simplest of tasks without the need for training.

Complexity & Feature Bloat
Another significant contributor to usability can be the complexity or “feature bloat” of the

software. Complexity is often caused by the software displaying far more functionality than

is needed by any one particular user. Dealing with additional fields, screens, and unfamiliar

terminology can cause users to view the software as too complex, whether or not they are

required to actually use those areas of the software.

Because functionality required by one user can be viewed by another as unnecessary,

removing the functionality is often not the best approach. The complexity issue may be better

addressed by ensuring that users do not encounter fields, screens, and terminology that is

not applicable to their particular function in the organization. This can be achieved in some

software through user-based configuration that hides elements of the application not

applicable to a user’s function.

Training Resources
Due to the nature of non-profits and the likelihood of high levels of turnover in volunteer

staff, it is useful to select a software product that includes video and self-paced instruction

modules in addition to reference documentation and/or classroom and on-site training

services.

Video and self-paced instruction, delivered via the internet will positively impact the

organization not only by reducing training costs but also by ensuring that users are more

effective as a result of their improved knowledge of software operation and their ability to

accurately perform processes managed by the software.

Accessibility
Another trademark feature of the Subscription Service model delivered via the internet is its

inherent ability to make information available anywhere, any time. This ability is further

augmented by the option to retrieve information via any internet-connected device (such as a

phone) using a web browser, assuming such devices are supported by the software.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 8

COMPATIBILITY
In today’s connected world, islands of information can

easily lead to process inefficiencies and data inaccuracy.

Such data island issues can be avoided by incorporating

data compatibility criteria into the application planning

and acquisition process.

At a basic level, data compatibility should include the

importing, exporting and merging of data between the

database application and productivity tools such as

Microsoft Office
®
.

Exporting from the database to productivity applications supports activities such as mail

merge, analysis, tabular and graphical reporting, electronic communications, and

presentation content. Importing to the database provides for adding to database records with

supplementary information from spreadsheets and other data sources. Such data can reflect

real world information (event attendance, activities, history, data from other systems) that is

useful when combined with data in the organization’s primary database.

An organization that has implemented two or more separate database applications such as

CRM, email campaign management, donor management and wealth screening will need to

contend with import/export issues to keep all data synchronized. In this instance,

compatibility of import/export formats between applications is essential as it is unlikely that

smaller non-profit organizations will find automated data interfaces an affordable

alternative. If however, the organization employs a fully integrated database application, it

will not need to contend with import/export issues due to the integrated nature of the system.

RELIABILITY
Reliability, generally measured in “uptime”, is a factor of application performance and

dependability as well as the performance and dependability of the infrastructure supporting

the application.

When critical applications are run on internal infrastructure (as in the case of built in-house

and purchase & run in-house scenarios), the reliability and performance of the infrastructure

– always important – now becomes as critical as the

availability of the software running on it. This fact

generally requires an organization to introduce a degree of

redundancy in its infrastructure by adding backup servers,

redundant disks, off-site rotational backups, physical

security against theft or destruction, and other measures.

While these measures themselves incur additional cost, the

majority of the cost burden can come from the need to

manage the added complexity in the infrastructure and introduce risk mitigation strategies

through addition of technical maintenance and support services.

When utilizing the subscription services scenario, the focus on reliability changes. In this

scenario, the most significant aspects of the infrastructure and management responsibility

for it are outsourced to the service provider. In this instance, it is important to ensure that

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 9

the service provider has incorporated reliability and redundancy measures such as failover

servers, redundant disk arrays, multiple network paths and data center security. From a cost

management point of view, this approach makes sense as it shares the cost burden of these

measures across the many organizations utilizing the provider’s shared infrastructure.

If you have read this section of the paper and feel overwhelmed with the potential complexity

and management responsibility of the items addressed, then the subscription service route is

probably the option of choice for your organization.

SUPPORTABILITY
Supportability addresses three distinct aspects of ongoing operational management:

 Remedial support services

 User support services

 Application design for supportability.

Remedial Support Services
There is no good time for something to go wrong with application software.

Performance issues, broken functionality, or access issues will need end-to-

end technical support services to ensure that the problem can be identified

and rectified.

In the case of built in-house, addressing support considerations can be

complex. If the database system was created by volunteers, it is important

to ensure that appropriate troubleshooting and remedial support

documentation has been made available. Combined with the

documentation, a contracted support services company retained for such

support emergencies should be able to return systems operation to a

nominal state with minimal interruption to operations. Such an arrangement is prudent

because it removes the reliance on immediate availability of the volunteer resources to

rectify system operational issues. While the volunteer may be a long standing member of the

non-profit community and there is a high level of trust in the individual concerned, failures

will eventually occur when the volunteer is unavailable for an extended period of time or not

at all.

In the case of purchase & run in-house, the software supplier will generally provide the

option for ongoing support and maintenance services. These services may or may not include

the option to support hardware and operating systems on which the application runs, so it is

important to determine if there are gaps in the support contract that will need to be

addressed. In this case, you will also want to ensure that there is an agreed protocol for

either a lead vendor, or single point of contact for problem ownership built into your

contracted support services. This added precaution avoids the issue of finger pointing when

those stickier issues make it unclear where the problem really lies.

In the case of subscription services, remedial support is included as a key aspect of the

service delivery and should be addressed in the agreement with your service provider(s). This

agreement will generally include a single metric expressed as “uptime availability percent.”

In this scenario, the most significant part of infrastructure and service delivery support is

handled by one or more vendors – the subscription service provider(s).

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 10

Even with outsourced remedial support, there are still a few minor support considerations to

be addressed such as local network and desktop infrastructure support – items which are

probably covered by existing arrangements. It is prudent to ensure that these existing

support providers are familiarized with the new subscription service(s) so as to be in a

position to contribute to remedial support activities when needed.

In the event that multiple external subscription services are used to meet overall database

needs, it is important to understand where to turn for assistance with data exchange and

interoperability between the multiple services. If a fully integrated service is used, support

for data exchange and interoperability will not be necessary as functionality will already be

integrated within the one service.

User Support Services
More often than not, support needs will be related to users not knowing how to complete a

specific task. This is common in the initial months of using a new system, so it is important

to ensure ready access to live support services in the early months of implementation.

Good documentation and task-indexed on-line video walk-throughs are very effective for

ongoing task-based assistance. In the event that these tools are not available or an answer

cannot be found using them, timely access to support professionals from the subscription

service vendor is essential. If such add-on services are charged beyond a certain level, it can

be prudent to ensure that there are processes in place to vet all requests from your users

prior to them being actioned by the vendor. Some vendors provide a service that allows you

to triage incoming requests as part of their support ticket management process.

EXTENSIBILITY
The last set of criteria to be considered is in the area of extensibility. While the current needs

for a system are probably well understood, needs do evolve over time. Changes needed in the

future may be small like needing to capture additional information for a process or may be

major such as adding e-commerce functionality to the web site.

The Data Integration Challenge
It is always possible to add an additional piece of software to address a new requirement. It

is important to keep in mind that doing so may create an additional “data island” which can

create future data integration issues.

Multiple database applications (CRM, e-Commerce, Customer & Inventory Management,

Donor Management, Electronic Communications Management, Inquiry tracking and other

process based systems) will at some point cause the organization to address data duplication

and contention issues. Problems like “which of the multiple addresses and contact

information for these supporters is correct” will crop up time after time. Processes must be

created and managed to address the complexity of these issues.

It is easy to see that integration across all of these data management areas is a most useful

requirement. As a result, when selecting an initial system, it is useful to plan to meet all of

the organization’s immediate needs by ensuring that all applicable areas are addressed by a

single application where possible.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 11

Extensibility through Modules
The aspect most often not considered at the time of system

selection is planning for the future unknown needs of the

organization. The simplest method for accommodating these

unknown needs is ensuring that the initial system is

designed to be extensible. This means having the ability to

integrate additional modules of functionality, both standard

and custom.

Additional modules are generally made available by either the vendor supplying the system

or by an ecosystem of partner suppliers. In the later case, the services of a consultant are

usually needed to manage the complexities of integrating the additional modules and to

manage the ongoing complexities of the integration. It is important to factor in consulting

costs over the long term for building such a multi-vendor integrated solution.

Extensibility through Open API’s
The second aspect of extensibility is more complex and involves utilizing open, published

interfaces that support interoperability and data integration with external applications.

These interfaces, generally called application programming interfaces or API’s, are generally

implemented with copious amounts of documentation that explain to the programmer and

other development personnel how they can be used.

In most cases, the nature of this type of extensibility restricts its usefulness to larger non-

profit organizations that have internal IT staff and budgets that accommodate specialized

development projects.

With the advent of subscription-based software services, these API’s are implemented using

a relatively new technology called Web Services. While still technical in nature, these web

services do make for a less complicated approach to creating custom applications to deal with

the special needs of an organization. Consequently, it can be useful to at least ensure that

subscription-based services have open, documented web service interfaces available should

the need for custom development projects arise in the future.

Whitepaper: Selecting Database Software for Small Non-Profits - © 2008 Stephen Hall 12

RESOURCES

The criteria detailed in this whitepaper are available as a software comparison worksheet to

assist in the evaluation of software packages for a small non-profit organization. The

worksheet (an Excel worksheet file) and an electronic version of this document is available

for download from:

http://www.connect4.net/Site/DBSelectWhitepaper.aspx

ABOUT THE AUTHOR

Steve Hall has spent over twenty five years in the information technology industry,

developing software and managing infrastructure. He has founded two database solution

startups and spent almost ten years managing international technology infrastructure for

Hewlett-Packard Co in Asia Pacific. Having more recently completed a three year stint as

Executive Director for a Silicon Valley based non-profit, Steve started Connect4 where he

now serves as CEO. Connect4 is the supplier of Gnosis – a new, integrated software-as-a-

service database solution for small to medium sized non-profits.

COPYRIGHT

This document is licensed under the following Creative Commons License:
Attribution-Noncommercial-No Derivative Works 3.0 Unported.

http://www.connect4.net/Site/DBSelectWhitepaper.aspx
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Introduction
	Major Criteria Groups
	Build it In-house
	Purchase & Run In-house
	Software Subscription Service

	Functionality
	Process Needs
	Information Management Needs
	Security Features
	Management and Reporting Needs
	Functionality versus Software Acquisition Models

	Total Cost of Ownership
	Contrasting Three Approaches
	Build In-house
	Purchase and Run In-house
	Software Subscription Service

	Not All Subscription Services are Created Equal
	Concurrent verses Named-user Fees
	Additional Module Fees
	Volume-based Fees

	Usability
	The User Interface – Three Basic Approaches
	Intuitive Design
	Complexity & Feature Bloat
	Training Resources
	Accessibility

	Compatibility
	Reliability
	Supportability
	Remedial Support Services
	User Support Services

	Extensibility
	The Data Integration Challenge
	Extensibility through Modules
	Extensibility through Open API’s

